

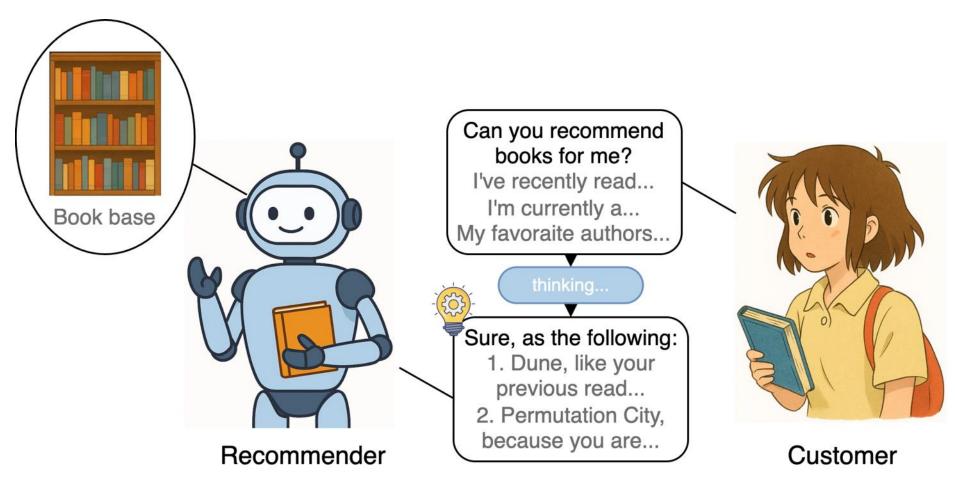
You Are What You Bought: Generating Customer Personas for E-commerce Applications

Yimin Shi, Yang Fei, Shiqi Zhang, Haixun Wang, Xiaokui Xiao

Background: E-commerce with LLM

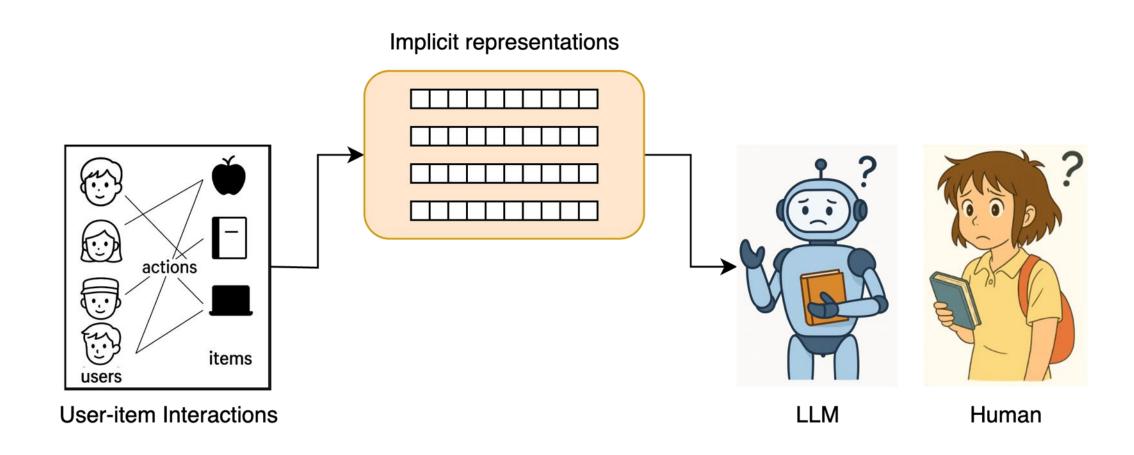
Example: online book retailer

Agent: personalized, explainable, convincing recommendations



Question: How to represent customers?

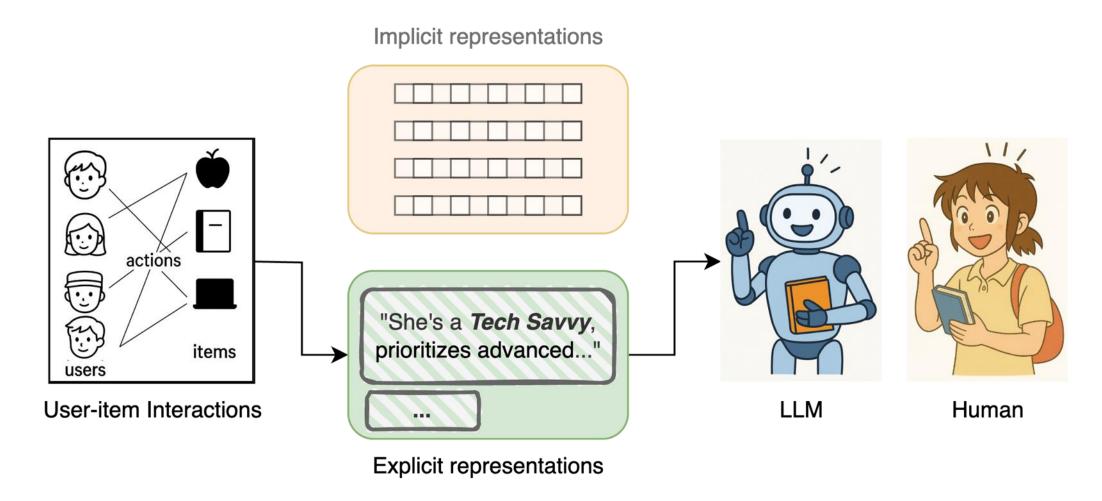
Current: implicit representations, (e.g., latent embeddings)



Question: How to represent customers?

Current: implicit representations, (e.g., latent embeddings)

Agents need: explicit representations (e.g., a piece of text)



Motivation: Customer Personas

Persona examples:

Busy Parents

frequently purchases kidfriendly products... look for convenience, buying pre-made meals...

Health Enthusiast

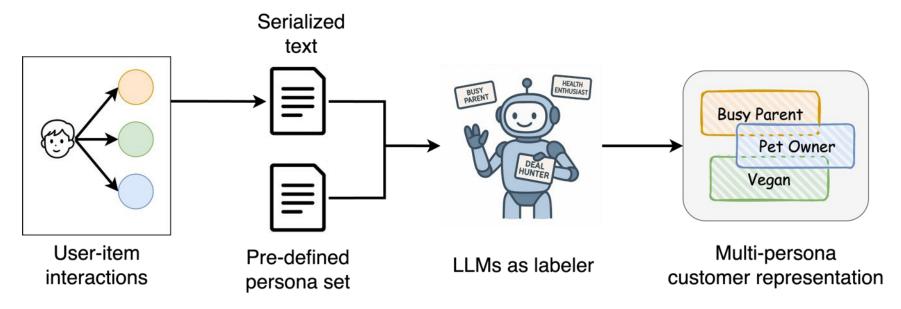
prioritizes healthy, often organic or non-GMO food, supplements, and health-related products...

Bargain Hunter

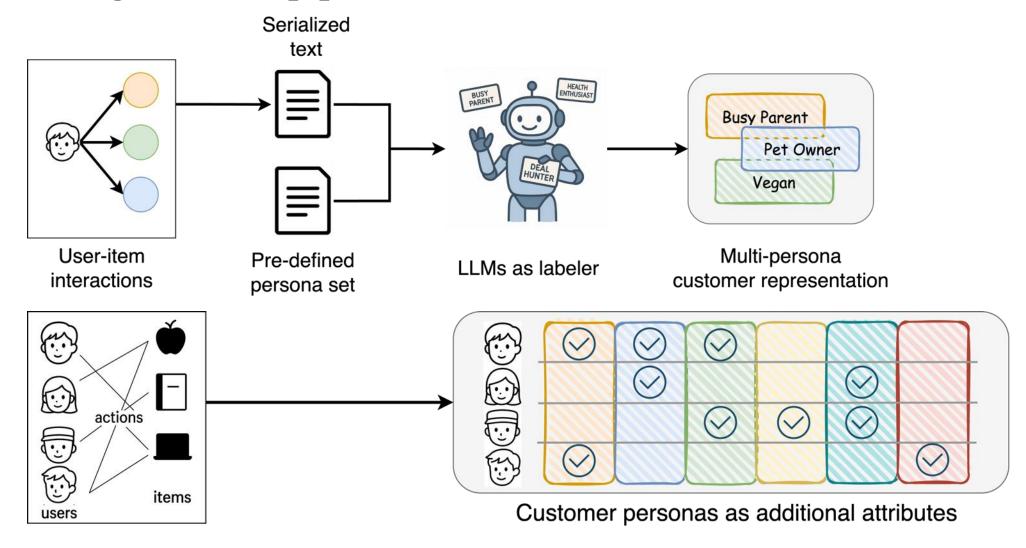
always on the lookout for the best deals and discounts... purchase in bulk to save money...

Properties: Informativeness, Readability, Robustness

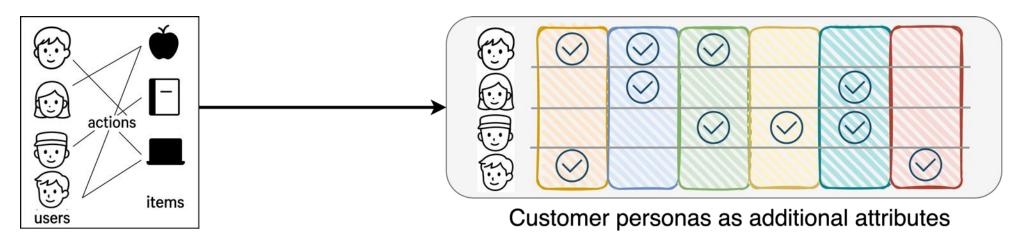
Persona generation pipeline:



Persona generation pipeline:



Persona generation pipeline:



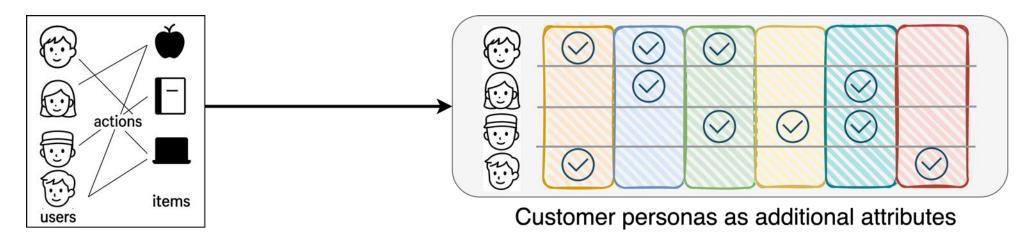
Downstream applications:

Product Recommendation

Customer Segmentation

Customer-centric Search Navigation

Persona generation pipeline:



Scalability issues:

- e-commerce platforms has millions of users
- user representations need to be dynamically updated
- LLMs are still expensive...

which Generates customers' Persona representation through leveraging Large language models and Random walk-based affinities

Method overview:

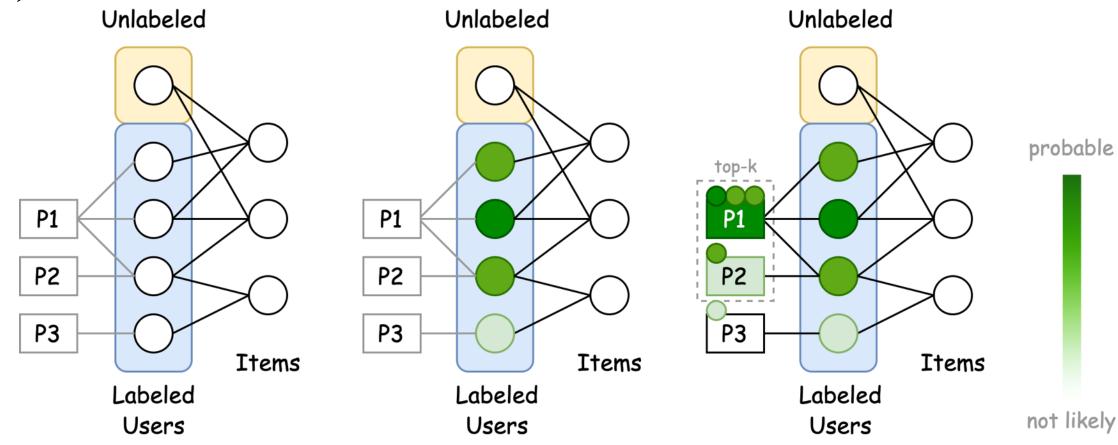
which Generates customers' Persona representation through leveraging Large language models and Random walk-based affinities

Method overview:

(1) DU-Sampling:

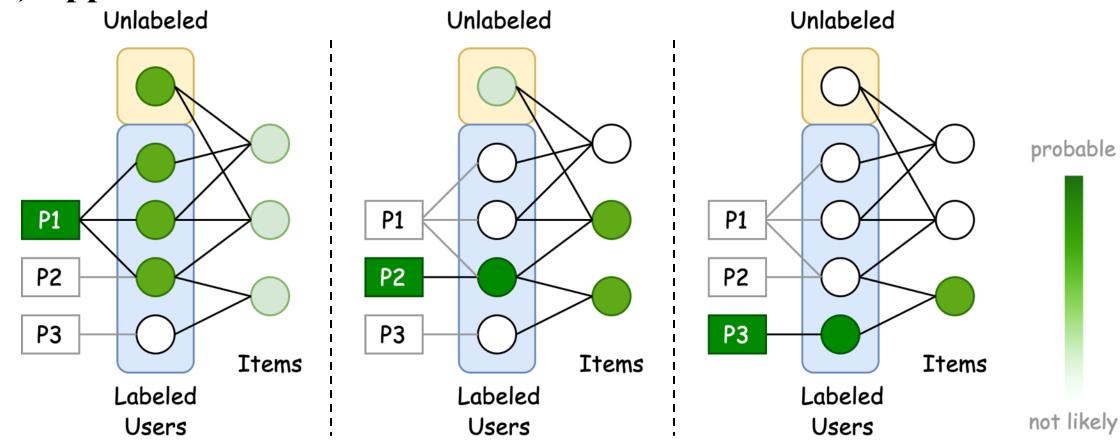
- iteratively sample 5~10% customers, label their personas via LLMs
- prefer customers with minor persona labels (**D**iversity)
- prefer those with greater <u>Uncertainty</u>

(2) Random walk-based affinities:



- Unlabeled user: find labeled neighbors via random walk
- then aggregate their personal labels

(3) Approximation: RevAff



- Reverse random walk + Prune out minor walks
- Lower computational complexity

Application: Product Recommendation

Objective:

Recommend relevant new products to customers

• Solution:

- Integrate persona labels generated by GPLR into the original user—item bipartite graph to construct a tripartite graph
- Apply GNN-based recommendation models on the resulting tripartite graph (e.g., LGCN3, AFDGCF)

Competitors:

• MF, GCMC, LCFN, LightGCN, LGCN, AFDGCF

Datasets:

Dataset	User#	Item#	Interaction#	Sparsity
OnlineRetail	4,297	3,846	263,267	98.4070%
Instacart	20,620	41,521	1,333,805	99.8442%
Instacart Full	206,209	49,677	13,307,953	99.8701%

Application: Product Recommendation

Main results

- NDCG@K, F1-Score@K; K={2, 5, 10, 20, 50, 100}
- LGCN3/LGCN: up to 11.7%; Ours/SOTA: up to 6.4%;

Table 3: Performance evaluation in NDCG@K (N@K) and F1-Score@K (F@K).

	OnelineRetail					Instacart						
	MF	Light	LGCN	AFD	LGCN3	A-LGCN3	MF	Light	LGCN	AFD	LGCN3	A-LGCN3
N@2	0.2391	0.2801	0.2686	0.2898	0.2933	0.2940	0.1166	0.1477	0.1405	0.1535	0.1570	0.1634
N@5	0.2143	0.2497	0.2356	0.2578	0.2602	0.2549	0.1006	0.1273	0.1208	0.1308	0.1319	0.1357
N@10	0.2104	0.2443	0.2274	0.2489	0.2503	0.2497	0.0916	0.1180	0.1106	0.1205	0.1197	0.1230
N@20	0.2221	0.2575	0.2383	0.2595	0.2577	0.2617	0.0934	0.1198	0.1117	0.1222	0.1206	0.1242
N@50	0.2612	0.2942	0.2772	0.2978	0.2940	0.2996	0.1150	0.1448	0.1351	0.1476	0.1451	0.1491
N@100	0.3011	0.3337	0.3167	0.3346	0.3325	0.3392	0.1389	0.1733	0.1618	0.1761	0.1732	0.1766
F@2	0.0859	0.1080	0.0955	0.1066	0.1052	0.1092	0.0326	0.0415	0.0375	0.0427	0.0411	0.0433
F@5	0.1123	0.1333	0.1207	0.1348	0.1332	0.1349	0.0478	0.0609	0.0564	0.0629	0.0611	0.0628
F@10	0.1225	0.1416	0.1352	0.1436	0.1431	0.1432	0.0560	0.0716	0.0672	0.0730	0.0722	0.0738
F@20	0.1239	0.1398	0.1341	0.1393	0.1406	0.1415	0.0602	0.0752	0.0710	0.0768	0.0758	0.0780
F@50	0.1081	0.1181	0.1159	0.1186	0.1201	0.1210	0.0565	0.0684	0.0644	0.0692	0.0681	0.0701
F@100	0.0886	0.0955	0.0934	0.0945	0.0967	0.0976	0.0470	0.0562	0.0528	0.0568	0.0557	0.0570

Application: Product Recommendation

Main results

- Sample rate = $\{5\%, 10\%, 20\%, 100\%\}$
- Even a 5% sample achieves performance comparable to the full

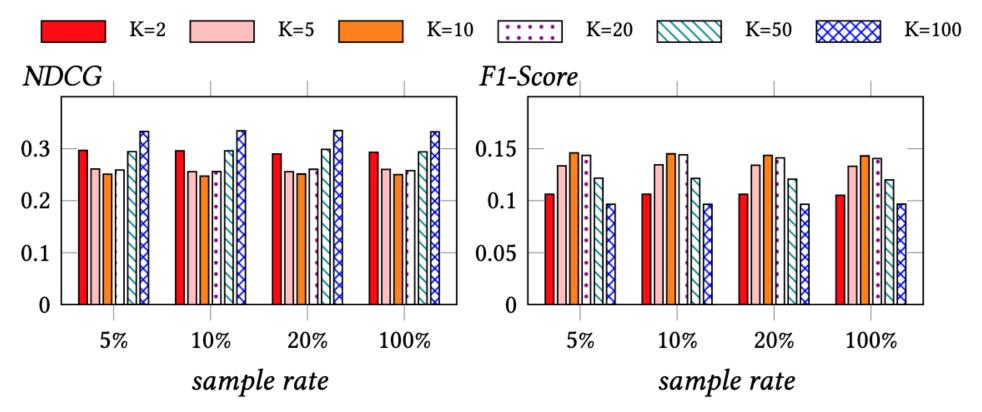


Figure 1: LGCN3 with different sample rates on OnlineRetail.

Application: Customer Segmentation

Objective:

• Cluster customers into groups with similar attributes

• Solution:

- Encode each customer using a one-hot persona representation
- Reduce the dimension via PCA, then apply K-Means

Competitor:

• RFM

Evaluation dimensions:

Robustness, cluster quality

Datasets:

- OnlineRetail
- sampled 300 customers with at least 10 transactions over all year

Application: Customer Segmentation

- Main results:
- Robustness
 - consistent: does not change in first and second half-year
 - 13.8×

Table 8: Robustness on OnlineRetail.

Method	# of Consistent Customers				
RFM	4 (1.3%)				
Persona	54 (18%)				

Cluster quality

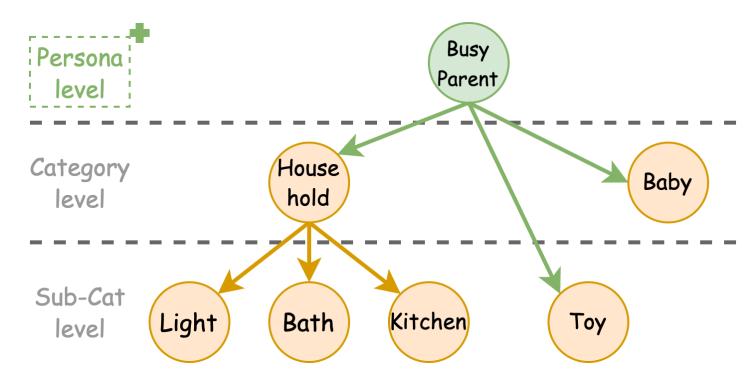
- Cluster# = $\{5, 15, 25, 35\}$
- avg. 61.3% better

Table 9: Silhouette scores on OnlineRetail.

Clusters#	5	15	25	35
RFM	0.366	0.404	0.431	0.445
Persona	0.451	0.671	0.771	0.788

Future work

- Real-word A/B tests
- New applications
- Customer-centric Search Navigation
 - Add persona-level on the original category-based taxonomy



AI Usage Disclosure: some images generated by ChatGPT