

You Are What You Bought:

Generating Customer Personas for E-commerce Applications

15 July | ANTENORE | 10:30-12:30

Yimin Shi, Yang Fei, Shiqi Zhang, Haixun Wang, Xiaokui Xiao

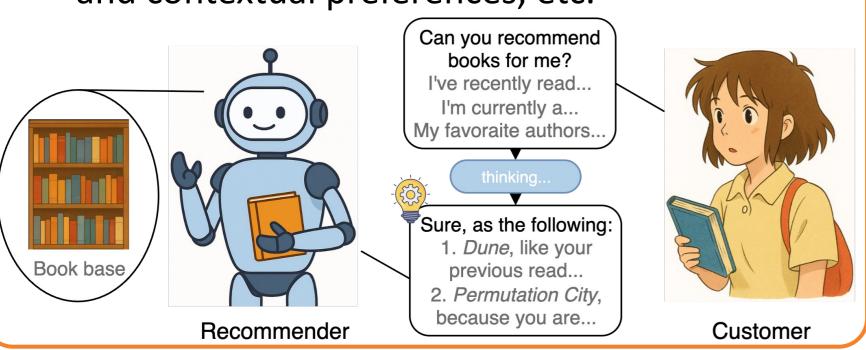
E-commerce with LLM

LLM capabilities

personalization, real-world knowledge, customer intention understanding

Scenario: online bookstore

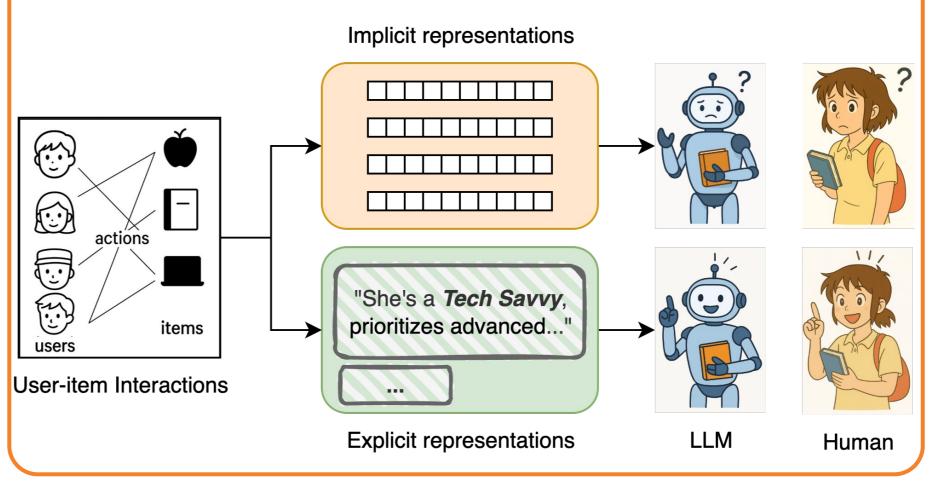
provides explainable book recommendation based on reading history, personal interests, and contextual preferences, etc.



Customer Representation Gap

From implicit to explicit

- traditional: map user behavior data to vectors
- need: explicit representations comprehensible to both LLM and human



Busy Parents

Persona

Bargain Hunter

Representation by Personas

Unlabeled users

Labeled users

not likely

probable

Persona properties: Informativeness, Readability, Robustness Persona generation pipeline:

- serialize user-item interactions into text with a template
- LLM labels the user based on a pre-defined persona set

Potential downstream applications:

Product recommendation, Customer Segmentation, Customer-centric Search Navigation, etc.

Scalability issue:

- e-commerce platforms easily have millions of users
- user representations need to be dynamically updated
- LLM inferences are expensive, we want to reduce the cost

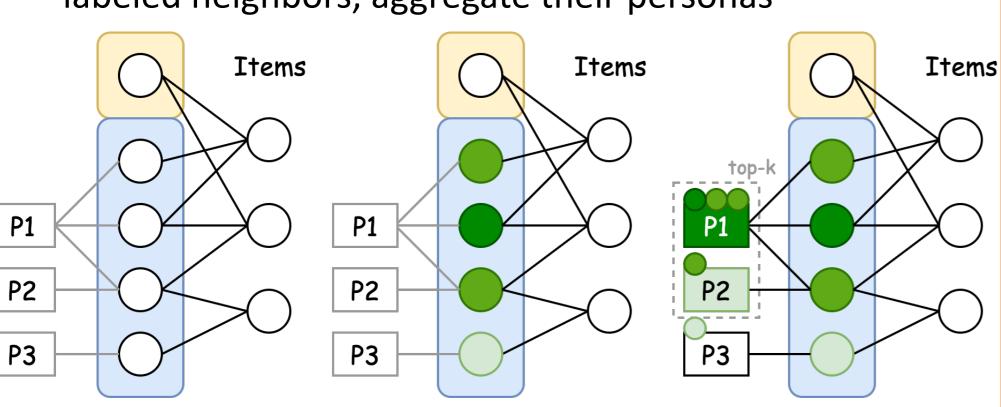
Serialized text **Busy Parent** Pet Owner Vegan User-item Multi-persona Pre-defined LLMs as labeler interactions customer representation persona set $\langle \rangle$ (\vee) \bigcirc [1] \bigcirc items Customer personas as additional attributes

GPLR

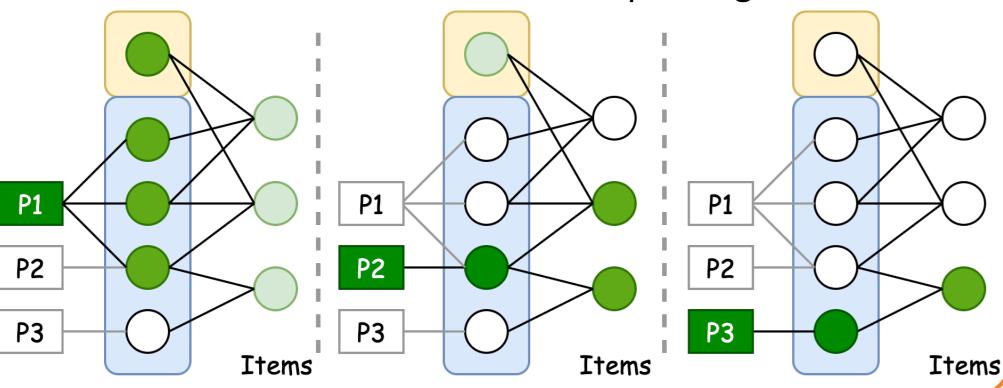
Method overview

DU-Sampling: selectively label 5% customers

Random walk: for each unlabeled, find their labeled neighbors, aggregate their personas



RevAff: reverse random walk with pruning for lower costs



Acknowledgement, technical report, code repository, etc.

This work is supported by the Ministry of Education, Singapore, under its MOE AcRF TIER 3 Grant (MOE-MOET32022-0001). For the technical report and code, please scan the QR code and visit Yimin's homepage.

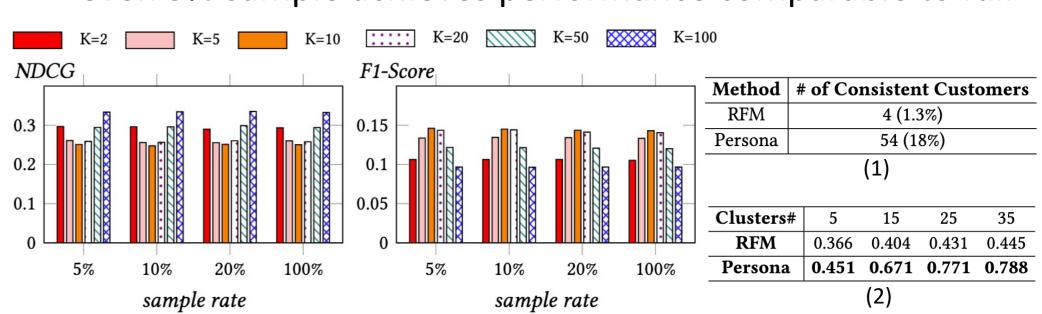
Experiments

Application 1: product recommendation

- solution: construct user-persona-item tripartite graph
- apply GNN-recommendation models on the tripartite
- competitors: MF, GCMC, LCFN, LightGCN, LGCN, AFDGCF

	OnelineRetail						Instacart					
	MF	Light	LGCN	AFD	LGCN3	A-LGCN3	MF	Light	LGCN	AFD	LGCN3	A-LGCN3
N@2	0.2391	0.2801	0.2686	0.2898	0.2933	0.2940	0.1166	0.1477	0.1405	0.1535	0.1570	0.1634
N@5	0.2143	0.2497	0.2356	0.2578	0.2602	0.2549	0.1006	0.1273	0.1208	0.1308	0.1319	0.1357
N@10	0.2104	0.2443	0.2274	0.2489	0.2503	0.2497	0.0916	0.1180	0.1106	0.1205	0.1197	0.1230
N@20	0.2221	0.2575	0.2383	0.2595	0.2577	0.2617	0.0934	0.1198	0.1117	0.1222	0.1206	0.1242
N@50	0.2612	0.2942	0.2772	0.2978	0.2940	0.2996	0.1150	0.1448	0.1351	0.1476	0.1451	0.1491
N@100	0.3011	0.3337	0.3167	0.3346	0.3325	0.3392	0.1389	0.1733	0.1618	0.1761	0.1732	0.1766
F@2	0.0859	0.1080	0.0955	0.1066	0.1052	0.1092	0.0326	0.0415	0.0375	0.0427	0.0411	0.0433
F@5	0.1123	0.1333	0.1207	0.1348	0.1332	0.1349	0.0478	0.0609	0.0564	0.0629	0.0611	0.0628
F@10	0.1225	0.1416	0.1352	0.1436	0.1431	0.1432	0.0560	0.0716	0.0672	0.0730	0.0722	0.0738
F@20	0.1239	0.1398	0.1341	0.1393	0.1406	0.1415	0.0602	0.0752	0.0710	0.0768	0.0758	0.0780
F@50	0.1081	0.1181	0.1159	0.1186	0.1201	0.1210	0.0565	0.0684	0.0644	0.0692	0.0681	0.0701
F@100	0.0886	0.0955	0.0934	0.0945	0.0967	0.0976	0.0470	0.0562	0.0528	0.0568	0.0557	0.0570

even 5% sample achieves performance comparable to full



Application 2: customer segmentation

- solution: encode each customer using one-hot, reduce the dimension via PCA, then cluster with KMeans
- dimensions: (1) robustness, (2) customer clustering quality